If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+10X-832=0
a = 1; b = 10; c = -832;
Δ = b2-4ac
Δ = 102-4·1·(-832)
Δ = 3428
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3428}=\sqrt{4*857}=\sqrt{4}*\sqrt{857}=2\sqrt{857}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{857}}{2*1}=\frac{-10-2\sqrt{857}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{857}}{2*1}=\frac{-10+2\sqrt{857}}{2} $
| 7x^2=5x+15 | | 9=2r+19 | | 7x-18/9=13 | | 12-x=3(4+x) | | 4x+4=9x+-36 | | 2x-1/2=3.333333333333 | | g/4-5.2=-3.7 | | 5(x+5)+5x+5=120 | | 3x+1=2x+2.5 | | 3(x+15)=30/5 | | 2=s+2 | | r/3+4.1=1.3 | | -18-12t=2-11t | | 6x-3=357 | | r/3=1.3 | | 4(q-8)=7q-5 | | 2x-1/2=3.33 | | 17x-x^2=17 | | 1/2f+-2=1/6f | | 3/8a-12=3/4 | | 2x-1/2=31/3 | | 8-5×=2(x+3) | | 3/4(x+1)-3x=1/2 | | 6/6-x=7/x | | -6(-3-4x)=18+5x | | 7r+7=6r+13 | | -175=-4(8+7p) | | 8y=6-9y | | -10+4e=5e-13 | | -21=-n-5 | | 7-3n=-4(6n-7) | | 5v-17=8(v-4) |